Supplement to Frege's Theorem and Foundations for Arithmetic

Proof of the Principle of Extensionality from Basic Law V

[Note: We use εF to denote the extension of the concept F.]

Assume Extension(x) and Extension(y). Then ∃F(x = εF) and ∃G(y = εG). Let P,Q be arbitrary such concepts; i.e., suppose x = εP and y = εQ.

Now to complete the proof, assume ∀z(zxzy). It then follows that ∀z(z ∈ εPz ∈ εQ). So, by the Law of Extensions and the principles of predicate logic, we may convert both conditions in the universalized biconditional to establish that ∀z(PzQz). So by Basic Law V, εP = εQ. So x = y.

Copyright © 2013 by
Edward N. Zalta <>

Open access to the SEP is made possible by a world-wide funding initiative.
Please Read How You Can Help Keep the Encyclopedia Free

The SEP would like to congratulate the National Endowment for the Humanities on its 50th anniversary and express our indebtedness for the five generous grants it awarded our project from 1997 to 2007. Readers who have benefited from the SEP are encouraged to examine the NEH’s anniversary page and, if inspired to do so, send a testimonial to