Notes to Set Theory: Constructive and Intuitionistic ZF

1. Note that one could also choose to leave out foundation (and set-induction) altogether. One may then wish to add an axiom, called antifoundation, which allows for the formation of non-well-founded sets, also called hypersets (see Aczel 1988 or Barwise and Moss 1996). In fact, a constructive treatment of non-well-founded sets can be given which mirrors the classical one (see for example Rathjen 2004). Further, by using a construction by Hällnas and Lindström of non-well-founded sets as limits of finite approximations (Lindström 1989), one can see that in constructive contexts the antifoundation axiom comes as proof-theoretically “inexpensive” if compared with set induction (Rathjen 2003).

2. Inaccessible sets in CZF corresponds in ZFC to Vk for k a strongly inaccessible cardinal, where Vk denotes the k-th level of the von Neumann hierarchy (Crosilla and Rathjen 2001).

Copyright © 2014 by
Laura Crosilla <>

Open access to the SEP is made possible by a world-wide funding initiative.
Please Read How You Can Help Keep the Encyclopedia Free

The SEP would like to congratulate the National Endowment for the Humanities on its 50th anniversary and express our indebtedness for the five generous grants it awarded our project from 1997 to 2007.