Stanford Encyclopedia of Philosophy
This is a file in the archives of the Stanford Encyclopedia of Philosophy.

Supplement to Relevance Logic

The Logic NR

Here is a Hilbert-style axiomatisation of the logic NR.

Our language contains propositional variables, parentheses, necessity, negation, conjunction, and implication. In addition, we use the following defined connectives:

AorB =df ¬(¬A & ¬B)
AB =df (AB) & (BA)
Axiom Scheme Axiom Name
1. AA Identity
2. (AB) → ((BC) → (AC)) Suffixing
3. A → ((AB) → B) Assertion
4. (A → (AB)) → (AB) Contraction
5. (A & B) → A,(A & B) → B & -Elimination
6. A → (AorB), B → (AorB) or-Introduction
7. ((AB) & (AB)) → (A → (B & C)) & -Introduction
8. ((AorB) → C)↔((AB) & (AC)) or-Elimination
9. (A & (BorC)) → ((A & B)or(A & C)) Distribution
10. (A → ¬B) → (B → ¬A) Contraposition
11. ¬¬AA Double Negation
12. □(AB) → (□A → □B) K
13. (□A & □B) → □(A & B) K&

Rule Name
AB, A proves B Modus Ponens
A, B proves A & B Adjunction
A provesA Necessitation