This is a file in the archives of the Stanford Encyclopedia of Philosophy. |
version |
Stanford Encyclopedia of Philosophy |
content revised
|
(KP) pIf one accepts the knowability principle she must deny that there are unknown truths. But that is to say that all truths are known. In sum, if all truths are knowable, then all truths are known.![]()
Kp.
Rediscovered by Hart and McGinn (1976) and Hart (1979), the result was taken to be a refutation of verificationism, the view that all meaningful statements (and so all truths) are verifiable. Mackie (1980) points out some difficulties with this position but ultimately agrees that Fitch's result is a refutation of KP and that some forms of verificationism weaker than KP are imperiled for related reasons. Since the early eighties, however, there has been considerable effort to analyze Fitch's result as a paradox. Why after all should it be that possible knowledge, as a characterization of truth, collapses into actual knowledge? Intuitively, that truth is to be understood in terms of the epistemic capacities of non-omniscient agents is at least a position in logical space. Moreover, it is thought strange that the fascinating and very difficult position expressed by KP should fall easy prey to swift natural deduction. As a result, Fitch's theorem has come to be known as the paradox of knowability. Yet there is little agreement about what exactly is wrong with Fitch's result. We explore the range of proposed solutions.
Suppose the knowability principle (KP), more carefully, all truths are knowable by somebody at some time:
(KP)And suppose that we are non-omniscient, that there is an unknown truth:p(p
![]()
Kp).
(NonO)If this existential is true, then so is an instance of it:p(p
![]()
Kp).
(1) pNow consider the instance of KP substituting line 1 for the variable p in KP:![]()
Kp.
(2) (pIt follows trivially that it is possible to know the conjunction expressed at line 1:![]()
Kp)
![]()
K(p
![]()
Kp)
(3)The problem is that it can be shown, independently, that it is impossible to know this conjunction. Line 3 is false.K(p
![]()
Kp)
The independent result presupposes two very modest epistemic inferences: first, a conjunction is known, only if the conjuncts are known. Second, a statement is known, only if it true. Respectively,
Also presupposed is the validity of two modest modal inferences: first, all theorems are necessarily true (the rule of necessitation). Second, if it is necessary that
(A) K(p q)
Kp
Kq
(B) Kp p
(C) If p, then
p.
(D) p
![]()
p.
Consider the independent result:
Line 9 contradicts line 3. So a contradiction follows from KP and NonO. The advocate of the view that all truths are knowable must deny that we are non-omniscient:
(4) K(p ![]()
Kp)
Assumption [for reductio] (5) Kp K
Kp
from 4, by (A) (6) Kp ![]()
Kp
from 5, applying (B) to the right conjunct (7) K(p
![]()
Kp)
from 4-6, by reductio, discharging assumption 4 (8) K(p
![]()
Kp)
from 7, by (C) (9) K(p
![]()
Kp)
from 8, by (D)
(10)And it follows from that that all truths are actually known:p(p
![]()
Kp).
(11)The ally of the view that all truths are knowable by somebody is forced absurdly to admit that every truth is known by somebody.p(p
Kp).
nor the following quantifier exchange rule:p
p,
Without double negation elimination one cannot derive Fitch's conclusion all truths are known (at line 11) from there is not a truth that is unknown (line 10). Consider line 10,xP[x]
![]()
x
P[x].
From this we may intuitionistically derivep(p
![]()
Kp).
But notice without double negation elimination,p
(p
![]()
Kp).
does not entail( p
![]()
Kp)
pSupposeKp.
and suppose p for conditional introduction. And suppose(p
![]()
Kp)
pThis contradicts our primary assumption. So, by reductio,![]()
Kp
pThe intuitionist is however committed, by conditional introduction, toKp
pBut, as Williamson points out, this is not evidently absurd. It expresses the plausible thought that there is no way for us to find instances of truths that will never be known. Importantly, the intuitionistic anti-realist is not committed to the absurd claim that all truths are known.![]()
Kp.
(12)This claim is classically, but not intuitionistically, equivalent to the non-omniscience thesis,p(p
Kp)
That is because in intuitionistic logic the quantifier exchange rule,p(p
![]()
Kp).
i. (Und)If Und is true, then so is an instance of it:p(
Kp
![]()
K
p)
ii.And notice that the intuitionistically acceptable conclusion at line 10,Kp
![]()
K
p.
iii.Derivingp(
Kp
p).
iv.The above argument is given by Percival (1990: 185). Since it is intutionistically acceptable, it is meant to show that the intuitionist anti-realist is still in trouble.p (
Kp
![]()
K
p)
In reply, the anti-realist again may utilize Williamson's strategy jointly to revise and reconstruct. Embrace only the intuitionistic consequences of KP (in this case, that there are no undecided statements), and give credence to the truism about undecidedness by claiming that not all statements are decided:
v.The reinterpretation of the undecidedness intuition at line v gives us a claim that is classically, but not intuitionistically, equivalent to Und. And so, it is only classically, and not intuitionistically, inconsistent with the result at line iv.p(Kp
K
p).
Related undecidedness paradoxes of knowability are discussed in Wright (1987: 311), Williamson (1988: 426) and Brogaard and Salerno (2002: 146-148). The undecidedness paradoxes give the anti-realist even further reason to revise classical logic in favor of intuitionistic logic. When accompanied by a reconstrual of our epistemically modest intuitions, logical space for anti-realism is reclaimed.
What all this shows is that intuitionist anti-realism is coherent. But is the approach well motivated? Is either the revision of classical logic or the clever reconstrual of our epistemic intuitions ad hoc?
The anti-realist's purported right to give up classical logic in favor of intuitionistic logic has been defended independently. The argument finds its roots in Dummett (e.g., 1976). More recent interpretations of the anti-realist's argument for logical revision appear in Wright (1992: Chp. 2), Tennant (1997: Chp. 7), and Salerno (2000). The details and success or failure of the arguments for logical revision is a topic for another time. For now it is enough to point out that the threat of Fitch's paradox is not the anti-realist's sole motivation for favoring a non-classical logic.
What about the reconstrual of our epistemic intuitions? Is it well motivated. According to Kvanvig (1995) it is not. Why should we grant that the intuitionistic treatments of non-omniscience and undecidedness are better than our initial common-sense treatments? And how is the anti-realist to explain away the apparent triviality of these common-sense treatments? These questions have not been answered.
Moreover, some of the intuitionistic consequences of KP are thought
to be bad enough. Even if there are no unknown truths or
there are no undecided statements are intuitionistically
tolerable, the following appears not to be: If p is unknown
then
p. Formally,
Kp
p. This claim follows
intuitionistically from p
Kp, which we have
already established as an intuitionistic consequence of KP. But
Kp
p
appears to be false for empirical discourse. Why should the fact that
nobody ever knows p be sufficient for the falsity of
p? See Percival (1990) and Williamson (1988) for further
discussions of this and related problems surrounding the application
of intuitionist anti-realism to empirical discourse.
For these reasons, an appeal to intuitionist logic, by itself, has been found to be unsatisfying in dealing with the paradoxes of knowability. Alternative solutions to the paradox have been sought.
Beall contends that (1) Fitch's proof turns on the assumption that,
for
all statements p, the contradiction Kp
Kp is impossible and (2) we have
independent evidence for thinking Kp
Kp, for some p. The independent
evidence lies in the paradox of the knower (not to be mistaken with
the paradox of knowability). The relevant version of the knower
paradox may be demonstrated by considering the following
self-referential sentence:
(k) k is unknown.Assume for the sake of argument that k is known. Then, presuming that knowledge entails truth, k is true. But k says that k is unknown. So k is unknown. Consequently if k is known, then k is both known and unknown. But then our assumption (i.e., that k is known) is false, and provably so. And, granting that a provably false sentence is known to be false, it follows that it is known that k is unknown. That is to say, it is known that k. But we have already shown that if it is known that k then k is both known and unknown. So it is proven that k is both known and unknown. It is provably the case that the full description of our knowledge includes both K(k) and
Beall suggests that the knower gives us some independent evidence for
thinking Kp
Kp, for some p, that the full
description of human knowledge has the interesting feature of being
inconsistent. With a paraconsistent logic, one may accept this
without triviality. And so it is suggested that one go paraconsistent
and embrace Kp
Kp as a true consequence of the knowability
principle. Beall concludes that Fitch's reasoning, without a proper
reply to the knower, is ineffective against the knowability principle.
For Fitch's reasoning allegedly turns on the assumption that, for all
p, it is impossible that Kp
Kp.
Notice that our presentation of Fitch's reasoning makes no explicit mention
of the assumption that Kp
Kp is impossible. So here we attempt to
pinpoint exactly where Fitch's reasoning goes wrong on the above
account. It is claimed at line 9 (in the first section of this entry)
that K(p
Kp)
is impossible. Of course K(p
Kp) entails the
contradiction Kp
Kp. And so, if the reasoning is that
K(p
Kp) is
impossible because contradictions are impossible, then Beall would be
directly attacking the argument presented herein. But notice the
argument here is subtly different. It goes like this. K(p
Kp) entails the
contradiction Kp
Kp. So, by a paraconsistently acceptable form
of reductio, K(p
Kp) is false. By necessitation, it
follows that K(p
Kp) is necessarily false. Again we find no
reason for the paraconsistency theorist to object. The claim that
K(p
Kp) is
impossible (at line 9) is then inferred from this claim that
K(p
Kp) is necessarily false. It is this
last inference that should most trouble the paraconsistency theorist.
The reason being that, by the lights of one learning to live with
contradiction, it does not follow that an inconsistent statement is
impossible even if it is necessarily false. After all, on this
account a necessarilly false statement may be both false and true at
some world, in which case the statement is both necessarily false and
possible. If this is right then the inference from
p to
p has
counterexamples and may not be employed to infer
K(p
Kp) from
K(p
Kp).
Beall's insights turn on a number of things: (1) the strength of the
independent evidence for true epistemic contradictions, (2) the
adequacy of the proposed resolutions to the knower paradox, (3) the
question of whether Fitch's reasoning is ineffective without a
resolution to the knower and (4) an interpretation for
and
that invalidates the
relevant inference (from
p to
p) while remaining
true to role played by
in the knowability principle. But these
problems must be left for further debate.
What are situations? The above example seems to suggest that situations are worlds. But situations may be less complete than worlds. That is, they need not have truth-values fixed for statements that are irrelevant to the context. Consider an example by Linstöm: I may know in a given perceptual situation s that John (one of the participants of a card game) has the best hand and that none of the participants knows this. In this case my knowledge is of one situation s*, the card game, but my knowledge is acquired in a different situation s, my perceptual situation. Situation s* is not only determined, but its relevant information is limited, by the context of the card game. And s is fixed and limited by the context of the perceptual situation. Edgington prefers talk of situations rather than worlds, because knowledge of non-actual situations, unlike knowledge of non-actual worlds, does not require knowledge of an infinite amount of detail.
Making explicit the situation-theoretic distinction between knowing in and knowing about, we may reinterpret the knowability principle: for each statement p and situation s, if p is true in s then there is a situation s* in which it is known that p is true in s. Edgington requires of knowability the less general thesis: if p is true in an actual situation s then there is a possible situation s* in which it is known that p is true in s. Call this E-knowability or EKP:
where A is the actuality operator which may be read In some actual situation, and
(EKP) Ap KAp,
The important suggestion is this. Just as there may be actual knowledge of what is counterfactually the case, there may be counterfactual knowledge of what is actually the case. In fact, in light of Fitch's result, E-knowability requires the existence of such non-actual knowledge. Let us see why.
Actual truths of the form p
Kp
will have to be E-knowable. But p
Kp cannot be actually known to be
actually the case. Consider the reasoning behind this point. It is
analogous to Fitch's reasoning. Suppose for reductio
that there is a situation s in which it is known that
p
Kp
is true in s. Then, by distributivity, the left conjunct is
known in s, that is, in s, Kp. Moreover,
since the conjunction is known to be true in s, the
conjunction is true in s. So the right conjunct,
Kp,
is true in s. In other words, in s,
Kp. Therefore there is a situation,
namely s, in which it is both known (by someone) and not
known (by anyone) that p. But there are no situations in
which a contradiction is true. By reductio, there is no situation
s in which it is known that p
Kp
is true in s. A fortiori, there is no actual situation in
which it is known that p
Kp
is actually true.
The lesson is this. If, for some p, p
Kp
is actually the case, as it is since we are non-omniscient, then, by
E-knowability, there is possible knowledge that p
Kp
is actually the case. Since this knowledge cannot be actual,
E-knowability requires non-actual knowledge of what is actually the
case. E-knowability then denies the following assumption: given a
statement p, if it is known that p in s,
then in s it is known that p. By Edgington's
analysis it is exactly this implicit assumption that leads Fitch's
reasoning astray. The paradox is blocked without it.
Further criticisms emerge when we attempt to say something informative about what constitutes non-actual knowledge of what is actually the case. If there is such non-actual knowledge, there is non-actual thought about an actual situation. So the non-actual thinker somehow has a concept of an actual situation. But how is it possible for a non-actual thinker to have a concept that is specifically about situations in this the actual world. It will not do for the thinker to express the thought actually p, since actually will designate rigidly only situations in her own world. Moreover, since there is no causal link between the actual world w1 and the relevant non-actual world w2, it is unclear how non-actual thought in w2 can be uniquely about w1 (Williamson, 1987[a]: 257-258). Therefore, it is unclear how there might be non-actual knowledge about what is actually the case.
Of course actual knowledge about the non-actual is no better at singling out worlds. The special problem for the non-actual knower is that the content of her thought must be precisely the content that we grasp when we consider the truth of Ap. Being in the actual world we are able to single out this world uniquely. When we consider the truth of Ap our context fixes the content of A specifically. So if it really is Ap that is knowable by a non-actual knower, then it must be Ap that she graspsthat is, it must be the very same concept that we grasp. But how this is possible is precisely the problem.
Related and additional criticisms of Edgington's proposal appear in Wright (1987), Williamson (1987[b]; 2000[b]) and Percival (1991). Formal developments on the proposal, including points that address some of these concerns appear in Rabinowicz and Segerberg (1994) and Lindström (1997).
Although anyone might not have been the inventor of bifocals, it does not follow (in fact it is false) that it is possible that the inventor of bifocals is not identical to the inventor of bifocals. After all, it is necessary that the inventor of bifocals is the inventor of bifocals.
x
x = i
Therefore, i = i
The lesson is that we may not substitute unrestrictedly into modal
contexts. Substitution into modal contexts, we might say, is permitted
only if the substituting terms are rigid designators. In the case of
Fitch's result, our terms are sentences. The knowability
principle,
p(p
Kp), apparently allows us to
substitute any sentence whatsoever for p. But notice that our
quantifier has wide scope relative to
.
We would expect
that the lessons of quantified modal logic carry over to quantified
propositional modal logic. If so, then we may not substitute for
p any statement that does not designate rigidly.
On Kvanvig's diagnosis, the problem with Fitch's reasoning is that
when he substituted the conjunction p
Kp
for p in KP (at line 2 of the result), he did not stop to
determine whether p
Kp is
rigid. Kvanvig maintains that p
Kp is
not rigid. So Fitch's result is fallacious owing to an illicit
substitution into a modal context. But we may reconstrue
p
Kp as rigid. And when we do, the paradox
evaporates.
Kvanvig proposes that quantified expressions are non-rigid. The
reason he gives is that quantifiers designate different objects in
different possible worlds. Everyone in Jon's Logic class must
take the final is about different students in different possible
worlds. Were Sussie to have taken the class, the expression would have
been about her. But she decided not to take the class, so actually it
is not about her. Kp is an abbreviation for it is
known by somebody at some time that p. So, Kp
is implicitly quantified. Explicitly it reads
x
t
(Kxpt), which says there is a being x and a time
t such that x knows that p at t.
Accordingly, on this account, the quantified expression that
Kp abbreviates is non-rigid.
x
t
(Kxpt) is about different beings and times in different
modal contexts. For instance, the expression
x
t
(Kxpt) is about actual beings and times. But embedded in a
modal context, e.g.,
x
t
(Kxpt), the expression is about possible beings and times.
It says, there is a possible world in which there is a being
x and time t such that x knows that
p at t.
Now consider the relevant instance of Fitch's non-omniscience thesis:
p
Kp.
Unabbreviated it reads, p
x
t (Kxpt), which says p
is true but nobody ever knows that p. The quantified
expression is, on this view, a non-rigid designator. Uttered in the
actual world, it is about actual beings and times. But, it is argued,
embedded within the scope of a possibility operator the designation
varies to be about possible beings and times. When Fitch substituted
the true conjunction, p
x
t
(Kxpt), for p in the
knowability principle, he substituted for p a non-rigid
designator, thereby altering the reference of the conjunction and
perpetrating a modal fallacy.
Alternatively, Kvanvig suggest, we may characterize
Kp rigidly to say, there is an actual
being x and actual time t such that it is known by
x at t that p. Since this expression
designates rigidly (i.e., it makes reference to the actual world
regardless of the modal context in which it appears) , it may be
substituted for p in the knowability principle. The
reinterpreted conjunction does not change its designation when embedded
within the scope of
. Moreover, on this reading of the
conjunction, the paradox dissolves. It is possible to know that the
reinterpreted conjunction is true. There is no contradiction in
supposing that some possible being at some possible time knows that
p is true but never known by an actual being at an actual
time. The paradox dissolves.
pF should then be a logical property with which the knowability theorist has some principled interest.Kp, where p has logical property F.
(TKP) pNotice that, as such, T-knowability is free of the paradoxes that we have discussed. It is free of Fitch's paradox and the related undecidedness paradox. For both results substitute the problematic Fitch conjunction, p![]()
Kp, where p is Cartesian.
where the logical constant on the right-hand side of each biconditional clause is understood as subject to the laws of intuitionistic logic.
p iff Kp, where p is basic.
p and q iff p q;
p or q iff p q;
if p then q iff p q;
it is not the case that p iff p;
F[Something] iff xF[x];
F[Everything] iff xF[x],
Dummett's knowability principle or DKP, like Tennant's, is not
threatened by the knowability paradoxes, and for the same reason. It
restricts the class of statements that are subject to knowability. For
Dummett's case, the problematic Fitch conjunction, p
Kp, being compound, and so not basic,
cannot replace the variable in p
Kp. The
paradox is consequently averted.
The main objections to the restriction strategies fall into two camps. In the first camp we find the charge that a given syntactic restriction on the knowability principle is not principled. From the second camp arise formulations of Fitch-like paradoxes that are not averted by the syntactic restrictions on knowable truth.
From the first camp Hand and Kvanvig (1999) protest that TKP has not been restricted in a principled manner, in effect, that we have been given no reason other than the threat of paradox to restrict the principle to Cartesian statements. (An analogous claim may be made of Dummett's DKP.) Tennant (2001[b]) replies to Hand and Kvanvig with general discussion about the admissibility of restrictions in the practice of conceptual analysis and philosophical clarification. By drawing analogies between his own restriction and others that are clearly admissible, he maintains that the Cartesian restriction is not ad-hoc. He also points out that TKP, rather than the unrestricted KP, serves as the more interesting point of contention between the semantic realist and anti-realist. The realist believes that it is possible for truth to be unknowable in principle. Fitch's reasoning, at best, shows us that there is structural unknowability, that is, unknowability that is a function of logical considerations alone. But is there a more substantial kind of unknowability, for instance, unknowability that is a function of the recognition-transcendence of the non-logical subject-matter? A realist decrying the ad hoc nature of TKP (or DKP) fails to engage the knowability theorist at the heart of the realism debate.
These concerns may be by-passed upon noticing versions of the paradox that do not violate the proposed restrictions on the knowability principle. Williamson (2000[a]) asks us to consider the following paradox. Let p be the decidable sentence There is a fragment of Roman pottery at that spot. Let n rigidly designate the number of books actually now on my desk. Let E be the predicate is even. Williamson constructs the conjunction,
pand contends that it is Cartesian. Knowing it, apparently, does not entail a contradiction. If he is right, we can apply to it TKP, giving(Kp
En),
(1) (pAdditionally, if p is true and Kp is false, then Williamson's conjunction is true. So,(Kp
En))
![]()
K(p
(Kp
En)).
(2) (pLines (1) and (2) yield![]()
Kp)
(p
(Kp
En)).
(3) (pAccepting the modest epistemic resources found in Fitch's reasoning, one can prove the following theorem:![]()
Kp)
![]()
K(p
(Kp
En)).
(4) K(pHere is why. A conjunction is known only if its conjuncts are known. So, if K(p(Kp
En))
En.
(5)From lines 3 and 5 we deriveK(p
(Kp
En))
![]()
En.
(6) (pSince n designates rigidly, it is not contingent whether n is even. It follows then that line 6 yields![]()
Kp)
![]()
En.
(7) (pAn analogous argument replacing odd for even gives us![]()
Kp)
En.
(8) (pBut then we have a contradiction resting on TKP and Fitch's conjunction, p![]()
Kp)
![]()
En.
Tennant (2001[a]) takes issue with Williamson's claim that
p (Kp
En) is
Cartesian. In the case where n is odd,
En expresses a necessary falsehood
(for instance, 13 is even). But then, line 4 tells us that
K(p
(Kp
En)) implies something that is necessarily false. And if the
falsity of 13 is even is a matter of logical
necessity, then p
(Kp
En) cannot be consistently known and therefore is
not Cartesian. Hence, when n is odd,
the first part of Williamson's proof (involving the predicate is
even) does in fact violate the Cartesian restriction. By contrast,
Williamson's conjunction is Cartesian when
En is true. But, analogously, if the
truth of En is a matter of logical
necessity, then p
(Kp
En)
cannot be consistently known and is therefore not Cartesian. Hence,
when n is even, the second part of
Williamson's proof (involving the predicate is odd) violates the
Cartesian restriction. Either way, Tennant argues, Williamson has not
shown that TKP is an inadequate treatment of Fitch's paradox.
Brogaard and Salerno (2002) develop other Fitch-like paradoxes
against the restriction strategies. Note that Dummett's knowability
principle is a biconditional: p
Kp,
where p is basic. Tennant (2002)
agrees that the knowability principle should preserve the factive
nature of
K. So they actually begin with the
following strengthened knowability principle:
(SKP) pMoreover, pending further discussion of the logic of K, it is not implausible that the intuitionist knowability theorist will validate the KK-principle:![]()
Kp, where p satisfies the relevant syntactic condition.
(KK)The principle says, necessarily, if p is known then it is known that p is known. One other resource is used, namely, the closure principle which says that the antecedent of a necessary conditional is possible only if the consequent is possible.(Kp
KKp).
If these commitments are granted, one can derive Fitch's result without violating Tennant's Cartesian restriction:
SKP is applied at lines 3 and 6 to p and Kp, respectively. And these substituends do not violate the Cartesian restriction. Neither Kp, nor KKp, is self-contradictory. Nonetheless, the anti-realist is forced absurdly to admit that no truth is unknown.
(1) p ![]()
Kp
Assumption (Fitch conjunction) (2) Kp KKp
from KK (3) p ![]()
Kp
from SKP (left-to-right) (4) Kp
from 1 and 3 (5) KKp
from 4 and 2, by closure (6) KKp
Kp
from SKP (right-to-left) (7) Kp from 5 and 6 (8) Kp ![]()
Kp
from 1 and 7
Arguably, this result threatens Dummett's restricted knowability principle as well. But that depends on whether we have applied the principle to basic statements only. p is basic, but Dummett's characterization of truth underdetermines the status of Kp. Perhaps it is basic, since Kp is not truth-functionally complex. Nonetheless, the issue cannot be resolved without a discussion of K.
Brogaard and Salerno demonstrate other paradoxes against the
restriction strategies. Those further results do not presuppose a
commitment to the KK-principle. They hinge ultimately on the
knowability theorist's interpretation of
.
When
is metaphysical possibility or governed by a
logic at least as strong as S4, the strong knowability principle
(appropriately restricted), and taken as a necessary thesis, entails
that there are no unknown truths. When
is epistemic possibility, and the knowability principle is treated as
a necessary thesis that is known, the knowability principle entails
that, necessarily, there are no undecided statements. Unlike the
undecidedness paradoxes of Wright (1987), Williamson (1988), and
Percival (1990), the reasoning provided by Brogaard and Salerno does
not violate Tennant's Cartesian restriction.
The success or failure of a syntactically restricted knowability
principle against these paradoxes will turn on future analysis of the
knowability theorist's interpretations of
and K.
Berit Brogaard bbrogaa@siue.edu |
Joe Salerno salernoj@slu.edu |