Supplement to Relevance Logic

The Logic NR

Here is a Hilbert-style axiomatisation of the logic \(\mathbf{NR}\).

Our language contains propositional variables, parentheses, necessity, negation, conjunction, and implication. In addition, we use the following defined connectives:

\[\begin{align} A\vee B &=_{df} \neg(\neg A \amp \neg B) \\ A \leftrightarrow B &=_{df} (A \rightarrow B) \amp(B \rightarrow A) \end{align}\]
Axiom Scheme Axiom Name
1. \(A \rightarrow A\) Identity
2. \((A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))\) Suffixing
3. \(A \rightarrow((A \rightarrow B) \rightarrow B)\) Assertion
4. \((A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)\) Contraction
5. \((A \amp B) \rightarrow A,(A \amp B) \rightarrow B\) & -Elimination
6. \(A \rightarrow(A\vee B), B \rightarrow(A\vee B)\) \(\vee\)-Introduction
7. \(((A \rightarrow B) \amp(A \rightarrow C)) \rightarrow(A \rightarrow(B \amp C))\) & -Introduction
8. \(((A\vee B) \rightarrow C)\leftrightarrow((A \rightarrow C) \amp(B \rightarrow C))\) \(\vee\)-Elimination
9. \((A \amp(B\vee C)) \rightarrow((A \amp B)\vee(A \amp C))\) Distribution
10. \((A \rightarrow \neg B) \rightarrow(B \rightarrow \neg A)\) Contraposition
11. \(\neg \neg A \rightarrow A\) Double Negation
12. \(\Box(A \rightarrow B) \rightarrow(\Box A \rightarrow \Box B)\) K
13. \((\Box A \amp \Box B) \rightarrow \Box(A \amp B)\) K&
Rule Name
1. \(A \rightarrow B, A \vdash B\) Modus Ponens
2. \(A, B \vdash A \amp B\) Adjunction
3. \(A \vdash \Box A\) Necessitation

Copyright © 2020 by
Edwin Mares <Edwin.Mares@vuw.ac.nz>

This is a file in the archives of the Stanford Encyclopedia of Philosophy.
Please note that some links may no longer be functional.