Supplement to Common Knowledge
Proof of Proposition 2.5
Proposition 2.5.
ω∈KmN(A)
iff
- (1)
- For all agents i1,i2,…,im∈N,ω∈Ki1Ki2…Kim(A)
Hence, ω∈K∗N(A) iff (1) is the case for each m≥1.
Proof.
Note first that
By (2),
KmN(A)⊆Ki1Ki2⋯Kim(A)for i1,i2,…,im∈N, so if ω∈KmN(A) then condition (1) is satisfied. Condition (1) is equivalent to
ω∈⋂i1∈NKi1(⋂i2∈NKi2(⋯(⋂im−1∈NKim−1(⋂im∈NKim(A)))))so by (2), if (1) is satisfied then ω∈KmN(A). ◻