Loading [MathJax]/jax/output/CommonHTML/jax.js

Supplement to Temporal Logic

Supplement: Axiomatic System FOTL(CD) for the Minimal FOTL with Constant Domain Semantics

The axiomatic system provided here is an adaptation of similar axiomatic systems that can be found in Rescher and Urquhart (1971, Chapter XX) and McArthur (1976, Chapter 4).

I. Axiom schemes:

  1. All axioms of the minimal propositional temporal logic Kt

  2. Universal Instantiation (-Elimination):
    xφ(x)φ(τ), for any term τ free for substitution for x in φ

  3. Reflexivity of equality: x(x=x)

  4. Extensionality: xy(x=y(φ[x/z]φ[y/z]))

  5. Future necessity of non-equality: xy(xyG(xy))

II. Inference rules  (where CD denotes derivability in FOTL(CD)):

  1. Modus Ponens: If CDφψ and CDφ, then CDψ

  2. G-Necessitation: If CDφ, then CDGφ

  3. H-Necessitation: If CDφ, then CDHφ

  4. Universal Generalization (-Introduction):
    If CDψφ(x), then CDψxφ, where x does not occur free in ψ

III. Some important theorems:

  1. Symmetry of equality: CDxy(x=yy=x)

    [Derived from Extensionality, applied to φ:=(z=x).]

  2. Future necessity of equality: CDxy(x=yG(x=y))

    [Derived from Extensionality, applied to φ:=G(x=z).]

  3. Past necessity of equality: CDxy(x=yH(x=y)).

    [Derived likewise.]

  4. Past necessity of non-equality: xy(xyH(xy)).

    [Derived from the future necessity of equality.]

  5. Transitivity of equality: CDxyz(x=yy=zx=z)

  6. The Converse Future Barcan formula CBFG:
    CDGxφ(x)xGφ(x)

    Proof:

    (a)  CDxφ(x)φ(x) (Universal Instantiation)

    (b)  CDGxφ(x)Gφ(x) (From (a) by NECG, KG, MP)

    (c)  CDGxφ(x)xGφ(x) (From (b) by Univ. Generalization)

  7. The Converse Past Barcan formula CBFH:
    CDHxφ(x)xHφ(x)

    [Derived by replacing G by H in the proof above.]

  8. CDPxφ(x)xPφ(x).

    Proof:

    (a)  CDxφ(x)φ(x) (Universal Instantiation)

    (b)  CDH(xφ(x)φ(x)) (From (a) by NECH)

    (c)  CDH(xφ(x)φ(x))(Pxφ(x)Pφ(x))
          (Instance of a TL validity)

    (d)  CDPxφ(x)Pφ(x) (From (b) and (c) by MP)

    (e)  CDPxφ(x)xPφ(x) (From (d) by Univ. Generalization)

  9. The Future Barcan formula BFG: CDxGφ(x)Gxφ(x)

    Proof sketch:

    (a)  CDPGφ(x)φ(x) (Instance of a TL validity)

    (b)  CDxPGφ(x)PGφ(x) (Universal Instantiation)

    (c)  CDxPGφ(x)φ(x) (From (a) and (b) by prop. logic)

    (d)  CDPxGφ(x)xPGφ(x) (Instance of Theorem 8 above)

    (e)  CDPxGφ(x)φ(x) (From (c) and (d) by prop. logic)

    (f)  CDPxGφ(x)xφ(x) (From (e) by Univ. Generalization)

    (g)  CDGPxGφ(x)Gxφ(x) (From (f) by NECG, KG, MP)

    (h)  CDxGφ(x)GPxGφ(x) (Instance of a TL validity)

    (i)  CDxGφ(x)Gxφ(x) (From (g) and (h) by prop. logic)

  10. The Past Barcan formula BFH: CDxHφ(x)Hxφ(x)

    [Derived by replacing P and G by F and H in the proof above.]

Copyright © 2024 by
Valentin Goranko <valentin.goranko@philosophy.su.se>
Antje Rumberg <antje.rumberg@uni-tuebingen.de>

This is a file in the archives of the Stanford Encyclopedia of Philosophy.
Please note that some links may no longer be functional.