Supplement to Defeasible Reasoning
Popper Functions
A Popper function is a function from pairs of propositions to real numbers that satisfies the following conditions:
- For some D,E,P[D∣E]≠1.
- P[A∣A]=1.
- P[A∣(C&B)]=P[A∣(B&C)].
- P[(B&A)∣C]=P[(A&B)∣C].
- P[A∣B]+P[¬A∣B]=1, or P[C∣B]=1.
- P[(A&B)∣C]=P[A∣(B&C)]×P[B∣C].