Supplement to Common Knowledge
Proof of Proposition 2.5
Proposition 2.5.ω ∈ KmN(A) iff
(1) For all agents i1, i2, … , im ∈ N, ω ∈ Ki1Ki2 … Kim(A)Hence, ω ∈ K*N(A) iff (1) is the case for each m ≥ 1.
Proof.
Note first that
(2) | ∩
i1 ∈ N |
Ki1 ( | ∩
i2 ∈ N |
Ki2 ( … ( | ∩
im−1 ∈ N |
Kim−1 ( | ∩
im ∈ N |
Kim(A) ) ) ) ) |
= | ∩
i1 ∈ N |
Ki1 ( | ∩
i2 ∈ N |
Ki2 ( … ( | ∩
im−1 ∈ N |
Kim−1(K1N(A))) ) ) |
= | ∩
i1 ∈ N |
Ki1 ( | ∩
i2 ∈ N |
Ki2 … ( | ∩
im−2 ∈ N |
Kim−2(K2N(A)) ) ) |
= … |
= | ∩
i1 ∈ N |
Ki1(Km−1N(A)) |
= | KmN(A) |
By (2),
KmN(A) ⊆ Ki1Ki2 … Kim(A)
for i1, i2, …, im ∈ N, so if ω ∈ KmN(A) then condition (1) is satisfied. Condition (1) is equivalent to
ω ∈ ∩
i1 ∈ NKi1 ( ∩
i2 ∈ NKi2 ( … ( ∩
im−1 ∈ NKim−1 ( ∩
im ∈ NKim(A) ) ) ) )
so by (2), if (1) is satisfied then ω ∈
KmN(A).
Copyright © 2005 by
Peter Vanderschraaf <peterv@cyrus.andrew.cmu.edu>
Giacomo Sillari <gsillari@andrew.cmu.edu>
Peter Vanderschraaf <peterv@cyrus.andrew.cmu.edu>
Giacomo Sillari <gsillari@andrew.cmu.edu>