Alphabetically Sorted, Complete Bibliography
- Adamek, J. et al., 1990, Abstract and Concrete
Categories: The Joy of Cats, New York: Wiley.
- Adamek, J. et al., 1994, Locally Presentable and
Accessible Categories, Cambridge: Cambridge University Press.
- Arzi-Gonczaworski, Z., 1999, "Perceive This as That —
Analogies, Artificial Perception, and Category Theory", Annals of
Mathematics and Artificial Intelligence, 26,
no. 1, 215–252.
- Awodey, S. & Butz, C., 2000, "Topological Completeness for
Higher Order Logic", Journal of Symbolic Logic,
65, 3, 1168–1182.
- Awodey, S. & Reck, E. R., 2002, "Completeness and
Categoricity I. Nineteen-Century Axiomatics to Twentieth-Century
Metalogic", History and Philosophy of Logic,
23, 1, 1–30.
- Awodey, S. & Reck, E. R., 2002, "Completeness and
Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century
Semantics", History and Philosophy of Logic,
23, 2, 77–94.
- Awodey, S., 1996, "Structure in Mathematics and Logic: A
Categorical Perspective", Philosophia Mathematica,
3, 209–237.
- Awodey, S., 2004, "An Answer to Hellman's Question: Does Category
Theory Provide a Framework for Mathematical Structuralism",
Philosophia Mathematica, 12,
54–64.
- Awodey, S., 2006, Category Theory, Oxford: Clarendon
Press.
- Baez, J. & Dolan, J., 1998a, "Higher-Dimensional Algebra
III. n-Categories and the Algebra of Opetopes", Advances
in Mathematics, 135, 145–206.
- Baez, J. & Dolan, J., 1998b, "Categorification", Higher
Category Theory, Contemporary Mathematics, 230,
Providence: AMS, 1–36.
- Baez, J. & Dolan, J., 2001, "From Finite Sets to Feynman
Diagrams", Mathematics Unlimited – 2001 and Beyond,
Berlin: Springer, 29–50.
- Baez, J., 1997, "An Introduction to n-Categories",
Category Theory and Computer Science, Lecture Notes in
Computer Science, 1290, Berlin: Springer-Verlag,
1–33.
- Baianu, I. C., 1987, "Computer Models and Automata Theory in
Biology and Medecine", in Witten, Matthew, Eds. Mathematical
Modelling, Vol. 7, 1986, chapter 11, Pergamon Press, Ltd.,
1513–1577.
- Barr, M. & Wells, C., 1985, Toposes, Triples and
Theories, New York: Springer-Verlag.
- Barr, M. & Wells, C., 1999, Category Theory for Computing
Science, Montreal: CRM.
- Batanin, M., 1998, "Monoidal Globular Categories as a Natural
Environment for the Theory of Weak n-Categories",
Advances in Mathematics, 136,
39–103.
- Bell, J. L., 1981, "Category Theory and the Foundations of
Mathematics", British Journal for the Philosophy of Science,
32, 349–358.
- Bell, J. L., 1982, "Categories, Toposes and Sets",
Synthese, 51, 3, 293–337.
- Bell, J. L., 1986, "From Absolute to Local Mathematics",
Synthese, 69, 3, 409–426.
- Bell, J. L., 1988, "Infinitesimals", Synthese,
75, 3, 285–315.
- Bell, J. L., 1988, Toposes and Local Set Theories: An
Introduction, Oxford: Oxford University Press.
- Bell, J. L., 1995, "Infinitesimals and the Continuum",
Mathematical Intelligencer, 17, 2,
55–57.
- Bell, J. L., 1998, A Primer of Infinitesimal
Analysis, Cambridge: Cambridge University Press.
- Bell, J. L., 2001, "The Continuum in Smooth Infinitesimal
Analysis", Reuniting the Antipodes — Constructive and
Nonstandard Views on the Continuum, Synthese Library,
306, Dordrecht: Kluwer, 19–24.
- Bell, J. L., 2001, "The Continuum in Smooth Infinitesimal
Analysis", Reuniting the Antipodes – Constructive and
Nonstandard Views on the Continuum, Synthese Library,
306, Dordrecht: Kluwer, 19–24.
- Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed.,
Providence: AMS.
- Biss, D.K., 2003, "Which Functor is the Projective Line?",
American Mathematical Monthly, 110, 7,
574–592.
- Blass, A. & Scedrov, A., 1983, Classifying Topoi and Finite
Forcing , Journal of Pure and Applied Algebra,
28, 111–140.
- Blass, A. & Scedrov, A., 1989, Freyd's Model for the
Independence of the Axiom of Choice, Providence: AMS.
- Blass, A. & Scedrov, A., 1992, "Complete Topoi Representing
Models of Set Theory", Annals of Pure and Applied Logic ,
57, no. 1, 1–26.
- Blass, A., 1984, "The Interaction Between Category Theory and Set
Theory", Mathematical Applications of Category Theory,
30, Providence: AMS, 5–29.
- Blute, R. & Scott, P., 2004, "Category Theory for Linear
Logicians", in Linear Logic in Computer Science, T. Ehrhard,
P. Ruet, J-Y. Girard, P. Scott, eds., Cambridge: Cambridge University
Press, 1–52.
- Boileau, A. & Joyal, A., 1981, "La logique des topos",
Journal of Symbolic Logic, 46, 1,
6–16.
- Borceux, F., 1994, Handbook of Categorical Algebra, 3
volumes, Cambridge: Cambridge University Press.
- Bunge, M., 1974, "Topos Theory and Souslin's Hypothesis",
Journal of Pure and Applied Algebra, 4,
159–187.
- Bunge, M., 1984, "Toposes in Logic and Logic in Toposes",
Topoi, 3, no. 1, 13–22.
- Cockett, J. R. B. & Seely,
R. A. G., 2001, "Finite Sum-product Logic", Theory
and Applications of Categories (electronic), 8,
63–99.
- Couture, J. & Lambek, J., 1991, "Philosophical Reflections on
the Foundations of Mathematics", Erkenntnis,
34, 2, 187–209.
- Couture, J. & Lambek, J., 1992, "Erratum:"Philosophical
Reflections on the Foundations of Mathematics"", Erkenntnis,
36, 1, 134.
- Crole, R. L., 1994, Categories for Types, Cambridge:
Cambridge University Press.
- Dieudonné, J. & Grothendieck, A., 1960, [1971],
Éléments de Géométrie
Algébrique, Berlin: Springer-Verlag.
- Ehresmann, A. C. & Vanbremeersch, J-P., 1987,
"Hierarchical Evolutive Systems: a Mathematical Model for Complex
Systems", Bulletin of Mathematical Biology,
49, no. 1, 13–50.
- Eilenberg, S. & Cartan, H., 1956, Homological
Algebra, Princeton: Princeton University Press.
- Eilenberg, S. & Mac Lane, S., 1942, "Group Extensions
and Homology", Annals of Mathematics, 43,
757–831.
- Eilenberg, S. & Mac Lane, S., 1945, "General Theory of
Natural Equivalences", Transactions of the American Mathematical
Society, 58, 231–294.
- Eilenberg, S. & Steenrod, N., 1952, Foundations of
Algebraic Topology, Princeton: Princeton University Press.
- Ellerman, D., 1988, "Category Theory and Concrete Universals",
Synthese, 28, 409–429.
- Feferman, S., 1977, "Categorical Foundations and Foundations of
Category Theory", Logic, Foundations of Mathematics and
Computability, R. Butts (ed.), Reidel, 149–169.
- Freyd, P., 1964, Abelian Categories. An Introduction to the
Theory of Functors, New York: Harper & Row.
- Freyd, P., 1965, "The Theories of Functors and
Models". Theories of Models, Amsterdam: North Holland,
107–120.
- Freyd, P., 1972, "Aspects of Topoi", Bulletin of the
Australian Mathematical Society, 7,
1–76.
- Freyd, P., 1980, "The Axiom of Choice", Journal of Pure and
Applied Algebra, 19, 103–125.
- Freyd, P., 1987, "Choice and Well-Ordering", Annals of Pure
and Applied Logic, 35, 2, 149–166.
- Freyd, P., 1990, Categories, Allegories, Amsterdam: North
Holland.
- Freyd, P., 2002, "Cartesian Logic", Theoretical Computer
Science, 278, no. 1–2, 3–21.
- Freyd, P., Friedman, H. & Scedrov, A., 1987, "Lindembaum
Algebras of Intuitionistic Theories and Free Categories", Annals
of Pure and Applied Logic, 35, 2,
167–172.
- Galli, A. & Reyes, G. & Sagastume, M., 2000, "Completeness
Theorems via the Double Dual Functor", Studia Logical,
64, no. 1, 61–81.
- Ghilardi, S. & Zawadowski, M., 2002, Sheaves, Games &
Model Completions: A Categorical Approach to Nonclassical
Porpositional Logics, Dordrecht: Kluwer.
- Ghilardi, S., 1989, "Presheaf Semantics and Independence Results
for some Non-classical first-order logics", Archive for
Mathematical Logic, 29, no. 2,
125–136.
- Goldblatt, R., 1979, Topoi: The Categorical Analysis of Logic,
Studies in logic and the foundations of mathematics, Amsterdam:
Elsevier.
- Grothendieck, A. et al., Séminaire de
Géométrie Algébrique, Vol. 1--7, Berlin:
Springer-Verlag.
- Grothendieck, A., 1957, "Sur Quelques Points d'algèbre
homologique", Tohoku Mathematics Journal, 9,
119–221.
- Hatcher, W. S., 1982, The Logical Foundations of
Mathematics, Oxford: Pergamon Press.
- Healy, M. J., 2000, "Category Theory Applied to Neural
Modeling and Graphical Representations", Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks:
IJCNN200, Como, vol. 3, M. Gori, S-I. Amari, C. L. Giles,
V. Piuri, eds., IEEE Computer Science Press, 35–40.
- Hellman, G., 2003, "Does Category Theory Provide a Framework for
Mathematical Structuralism?", Philosophia Mathematica,
11, 2, 129–157.
- Hermida, C. & Makkai, M. & Power, J., 2000, "On Weak
Higher-dimensional Categories I", Journal of Pure and Applied
Algebra, 154, no. 1-3, 221–246.
- Hermida, C. & Makkai, M. & Power, J., 2001, "On Weak
Higher-dimensional Categories 2", Journal of Pure and Applied
Algebra, 157, no. 2-3, 247–277.
- Hermida, C. & Makkai, M. & Power, J., 2002, "On Weak
Higher-dimensional Categories 3", Journal of Pure and Applied
Algebra, 166, no. 1-2, 83–104.
- Hyland, J. M. E. & Robinson, E. P. &
Rosolini, G., 1990, "The Discrete Objects in the Effective Topos",
Proceedings of the London Mathematical Society (3),
60, no. 1, 1–36.
- Hyland, J. M. E., 1982, "The Effective Topos",
Studies in Logic and the Foundations of Mathematics,
110, Amsterdam: North Holland, 165–216.
- Hyland, J. M. E., 1988, "A Small Complete Category",
Annals of Pure and Applied Logic, 40, no. 2,
135–165.
- Hyland, J. M. E., 1991, "First Steps in Synthetic
Domain Theory", Category Theory (Como 1990), Lecture Notes in
Mathematics, 1488, Berlin: Springer,
131–156.
- Hyland, J. M. E., 2002, "Proof Theory in the
Abstract", Annals of Pure and Applied Logic,
114, no. 1–3, 43–78.
- Jacobs, B., 1999, Categorical Logic and Type Theory,
Amsterdam: North Holland.
- Johnstone, P. T., 1977, Topos Theory, New York:
Academic Press.
- Johnstone, P. T., 1979a, "Conditions Related to De Morgan's
Law", Applications of Sheaves, Lecture Notes in Mathematics,
753, Berlin: Springer, 479–491.
- Johnstone, P. T., 1979b, "Another Condition Equivalent to
De Morgan's Law", Communications in Algebra,
7, no. 12, 1309–1312.
- Johnstone, P. T., 1981, "Tychonoff's Theorem without the
Axiom of Choice", Fundamenta Mathematicae,
113, no. 1, 21–35.
- Johnstone, P. T., 1982, Stone Spaces,
Cambridge:Cambridge University Press.
- Johnstone, P. T., 1985, "How General is a Generalized
Space?", Aspects of Topology, Cambridge: Cambridge University
Press, 77–111.
- Johnstone, P. T., 2001, "Elements of the History of Locale
Theory", Handbook of the History of General Topology, Vol. 3,
Dordrecht: Kluwer, 835–851.
- Johnstone, P. T., 2002a, Sketches of an Elephant: a
Topos Theory Compendium. Vol. 1, Oxford Logic Guides,
43, Oxford: Oxford University Press.
- Joyal, A. & Moerdijk, I., 1995, Algebraic Set Theory,
Cambridge: Cambridge University Press.
- Kan, D. M., 1958, "Adjoint Functors", Transactions of
the American Mathematical Society, 87,
294–329.
- Kock, A., 1981, Synthetic Differential Geometry, London
Mathematical Society Lecture Note Series, 51,
Cambridge: Cambridge University Press.
- La Palme Reyes, M., et. al., 1994, "The non-Boolean Logic of
Natural Language Negation", Philosophia Mathematica,
2, no. 1, 45–68.
- La Palme Reyes, M., et. al., 1999, "Count Nouns, Mass Nouns, and
their Transformations: a Unified Category-theoretic Semantics",
Language, Logic and Concepts, Cambridge: MIT Press,
427–452.
- Lambek, J. & Scott, P.J., 1981, "Intuitionistic Type Theory
and Foundations", Journal of Philosophical Logic,
10, 1, 101–115.
- Lambek, J. & Scott, P.J., 1983, "New Proofs of Some
Intuitionistic Principles", Zeitschrift f¸r
Mathematische Logik und Grundlagen der Mathematik,
29, 6, 493–504.
- Lambek, J. & Scott, P.J., 1986, Introduction to Higher
Order Categorical Logic, Cambridge: Cambridge University
Press.
- Lambek, J. 1994, "Are the Traditional Philosophies of Mathematics
Really Incompatible?", Mathematical Intelligencer,
16, 1, 56–62.
- Lambek, J., 1968, "Deductive Systems and Categories I. Syntactic
Calculus and Residuated Categories", Mathematical Systems
Theory, 2, 287–318.
- Lambek, J., 1969, "Deductive Systems and Categories II. Standard
Constructions and Closed Categories", Category Theory, Homology
Theory and their Applications I, Berlin: Springer,
76–122.
- Lambek, J., 1972, "Deductive Systems and Categories III. Cartesian
Closed Categories, Intuition≠istic Propositional
Calculus, and Combinatory Logic", Toposes, Algebraic Geometry and
Logic, Lecture Notes in Mathematics, 274,
Berlin: Springer, 57–82.
- Lambek, J., 1982, "The Influence of Heraclitus on Modern
Mathematics", Scientific Philosophy Today, J. Agassi and
R.S. Cohen, eds., Dordrecht, Reidel, 111–122.
- Lambek, J., 1986, "Cartesian Closed Categories and Typed lambda
calculi", Combinators and Functional Programming Languages,
Lecture Notes in Computer Science, 242, Berlin:
Springer, 136–175.
- Lambek, J., 1989, "On Some Connections Between Logic and Category
Theory", Studia Logica, 48, 3,
269–278.
- Lambek, J., 1989, "On the Sheaf of Possible Worlds",
Categorical Topology and its relation to Analysis, Algebra and
Combinatorics, Teaneck: World Scientific Publishing,
36–53.
- Lambek, J., 1993, "Logic without Structural Rules",
Substructural Logics, Studies in Logic and Computation,
2, Oxford: Oxford University Press,
179–206.
- Lambek, J., 1994, "Some Aspects of Categorical Logic", Logic,
Methodology and Philosophy of Science IX, Studies in Logic and
the Foundations of Mathematics 134, Amsterdam: North
Holland, 69–89.
- Lambek, J., 1994, "What is a Deductive System?", What is a
Logical System?, Studies in Logic and Computation,
4, Oxford: Oxford University Press,
141–159.
- Lambek, J., 2004, "What is the world of Mathematics? Provinces of
Logic Determined", Annals of Pure and Applied Logic,
126(1-3), 149–158.
- Landry, E. & Marquis, J.-P., 2005, "Categories in Context:
Historical, Foundational and philosophical", Philosophia
Mathematica, 13, 1–43.
- Landry, E., 1999, "Category Theory: the Language of Mathematics",
Philosophy of Science, 66, 3: supplement,
S14–S27.
- Landry, E., 2001, "Logicism, Structuralism and Objectivity",
Topoi, 20, 1, 79–95.
- Lawvere, F. W. & Rosebrugh, R., 2003, Sets for
Mathematics, Cambridge: Cambridge University Press.
- Lawvere, F. W. & Schanuel, S., 1997, Conceptual
Mathematics: A First Introduction to Categories, Cambridge:
Cambridge University Press.
- Lawvere, F. W., 1964, "An Elementary Theory of the Category
of Sets", Proceedings of the National Academy of Sciences
U.S.A., 52, 1506–1511.
- Lawvere, F. W., 1965, "Algebraic Theories, Algebraic
Categories, and Algebraic Functors", Theory of Models,
Amsterdam: North Holland, 413–418.
- Lawvere, F. W., 1966, "The Category of Categories as a
Foundation for Mathematics", Proceedings of the Conference on
Categorical Algebra, La Jolla, New York: Springer-Verlag,
1–21.
- Lawvere, F. W., 1969a, "Diagonal Arguments and Cartesian
Closed Categories", Category Theory, Homology Theory, and their
Applications II, Berlin: Springer, 134–145.
- Lawvere, F. W., 1969b, "Adjointness in Foundations",
Dialectica, 23, 281–295.
- Lawvere, F. W., 1970, "Equality in Hyper doctrines and
Comprehension Schema as an Adjoint Functor", Applications of
Categorical Algebra, Providence: AMS, 1-14.
- Lawvere, F. W., 1971, "Quantifiers and Sheaves", Actes
du Congrès International des Mathématiciens, Tome
1, Paris: Gauthier-Villars, 329–334.
- Lawvere, F. W., 1972, "Introduction", Toposes,
Algebraic Geometry and Logic, Lecture Notes in Mathematics, 274,
Springer-Verlag, 1–12.
- Lawvere, F. W., 1975, "Continuously Variable Sets:
Algebraic Geometry = Geometric Logic", Proceedings of the Logic
Colloquium Bristol 1973, Amsterdam: North Holland,
135–153.
- Lawvere, F. W., 1976, "Variable Quantities and Variable
Structures in Topoi", Algebra, Topology, and Category Theory,
New York: Academic Press, 101–131.
- Lawvere, F. W., 1992, "Categories of Space and of
Quantity", The Space of Mathematics, Foundations of
Communication and Cognition, Berlin: De Gruyter, 14–30.
- Lawvere, F. W., 1994, "Cohesive Toposes and Cantor's lauter
Ensein ", Philosophia Mathematica, 2, 1,
5–15.
- Lawvere, F. W., 1994, "Tools for the Advancement of
Objective Logic: Closed Categories and Toposes", The Logical
Foundations of Cognition, Vancouver Studies in Cognitive Science,
4, Oxford: Oxford University Press, 43–56.
- Lawvere, F. W., 2000, "Comments on the Development of Topos
Theory", Development of Mathematics 1950-2000, Basel:
Birkhäuser, 715–734.
- Lawvere, F. W., 2002, "Categorical Algebra for Continuum
Micro Physics", Journal of Pure and Applied Algebra,
175, no. 1–3, 267–287.
- Lawvere, F. W., 2003, "Foundations and Applications:
Axiomatization and Education. New Programs and Open Problems in the
Foundation of Mathematics", Bullentin of Symbolic Logic,
9, 2, 213–224.
- Lawvere, F.W., 1963, "Functorial Semantics of Algebraic Theories",
Proceedings of the National Academy of Sciences U.S.A.,
50, 869–872.
- Leinster, T., 2002, "A Survey of Definitions of
n-categories", Theory and Applications of
Categories, (electronic), 10, 1–70.
- Mac Lane, S. & Moerdijk, I., 1992, Sheaves in
Geometry and Logic, New York: Springer-Verlag.
- Mac Lane, S., 1950, "Dualities for Groups", Bulletin of
the American Mathematical Society, 56,
485–516.
- Mac Lane, S., 1969, "Foundations for Categories and Sets",
Category Theory, Homology Theory and their Applications II,
Berlin: Springer, 146–164.
- Mac Lane, S., 1969, "One Universe as a Foundation for
Category Theory", Reports of the Midwest Category Seminar
III, Berlin: Springer, 192–200.
- Mac Lane, S., 1971, "Categorical algebra and Set-Theoretic
Foundations", Axiomatic Set Theory, Providence: AMS,
231–240.
- Mac Lane, S., 1975, "Sets, Topoi, and Internal Logic in
Categories", Studies in Logic and the Foundations of
Mathematics, 80, Amsterdam: North Holland,
119–134.
- Mac Lane, S., 1981, "Mathematical Models: a Sketch for the
Philosophy of Mathematics", American Mathematical Monthly,
88, 7, 462–472.
- Mac Lane, S., 1986, Mathematics, Form and
Function, New York: Springer.
- Mac Lane, S., 1988, "Concepts and Categories in
Perspective", A Century of Mathematics in America, Part I,
Providence: AMS, 323–365.
- Mac Lane, S., 1989, "The Development of Mathematical Ideas
by Collision: the Case of Categories and Topos Theory",
Categorical Topology and its Relation to Analysis, Algebra and
Combinatorics, Teaneck: World Scientific, 1–9.
- Mac Lane, S., 1996, "Structure in Mathematics. Mathematical
Structuralism", Philosophia Mathematica, 4,
2, 174–183.
- Mac Lane, S., 1997, "Categorical Foundations of the Protean
Character of Mathematics", Philosophy of Mathematics Today,
Dordrecht: Kluwer, 117–122.
- Mac Lane, S., 1998, Categories for the Working
Mathematician, 2nd edition, New York:
Springer-Verlag.
- MacNamara, J. & Reyes, G., (eds.), 1994, The Logical
Foundation of Cognition, Oxford: Oxford University Press.
- Makkai, M. & Paré, R., 1989, Accessible Categories:
the Foundations of Categorical Model Theory, Contemporary
Mathematics 104, Providence: AMS.
- Makkai, M. & Reyes, G., 1977, First-Order Categorical
Logic, Springer Lecture Notes in Mathematics 611, New York:
Springer.
- Makkai, M., 1987, "Stone Duality for First-Order Logic",
Advances in Mathematics, 65, 2,
97–170.
- Makkai, M., 1988, "Strong Conceptual Completeness for First Order
Logic", Annals of Pure and Applied Logic,
40, 167–215.
- Makkai, M., 1997a, "Generalized Sketches as a Framework for
Completeness Theorems I", Journal of Pure and Applied
Algebra, 115, 1, 49–79.
- Makkai, M., 1997b, "Generalized Sketches as a Framework for
Completeness Theorems II", Journal of Pure and Applied
Algebra, 115, 2, 179–212.
- Makkai, M., 1997c, "Generalized Sketches as a Framework for
Completeness Theorems III", Journal of Pure and Applied
Algebra, 115, 3, 241–274.
- Makkai, M., 1998, "Towards a Categorical Foundation of
Mathematics", Lecture Notes in Logic, 11,
Berlin: Springer, 153–190.
- Makkai, M., 1999, "On Structuralism in Mathematics", Language,
Logic and Concepts, Cambridge: MIT Press, 43–66.
- Makkei, M. & Reyes, G., 1995, "Completeness Results for
Intuitionistic and Modal Logic in a Categorical Setting", Annals
of Pure and Applied Logic, 72, 1,
25–101.
- Marquis, J.-P., 1993, "Russell's Logicism and Categorical
Logicisms", Russell and Analytic Philosophy, A. D. Irvine
& G. A. Wedekind, (eds.), Toronto, University of Toronto Press,
293–324.
- Marquis, J.-P., 1995, "Category Theory and the Foundations of
Mathematics: Philosophical Excavations", Synthese,
103, 421–447.
- Marquis, J.-P., 2000, "Three Kinds of Universals in Mathematics?",
Logical Consequence: Rival Approaches and New Studies in Exact
Philosophy: Logic, Mathematics and Science, Vol. 2, Oxford:
Hermes, 191–212.
- Marquis, J.-P., 2000, "Three Kinds of Universals in Mathematics?",
in Logical Consequence: Rival Approaches and New Studies in Exact
Philosophy: Logic, Mathematics and Science, Vol. II, B. Brown
& J. Woods, eds., Oxford: Hermes, 191-212, 2000
- Marquis, J.-P., 2006, "Categories, Sets and the Nature of
Mathematical Entities", in The Age of Alternative
Logics. Assessing philosophy of logic and mathematics today,
J. van Benthem, G. Heinzmann, Ph. Nabonnand, M. Rebuschi, H.Visser,
eds., Springer,181-192.
- Mc Larty, C., 1986, "Left Exact Logic", Journal of Pure
and Applied Algebra, 41, no. 1,
63–66.
- Mc Larty, C., 1990, "Uses and Abuses of the History of
Topos Theory", British Journal for the Philosophy of Science,
41, 351–375.
- Mc Larty, C., 1991, "Axiomatizing a Category of
Categories", Journal of Symbolic Logic, 56,
no. 4, 1243–1260.
- Mc Larty, C., 1992, Elementary Categories, Elementary
Toposes, Oxford: Oxford University Press.
- Mc Larty, C., 1993, "Numbers Can be Just What They Have
to", Noûs, 27, 487–498.
- Mc Larty, C., 1994, "Category Theory in Real Time",
Philosophia Mathematica, 2, no. 1,
36–44.
- Mc Larty, C., 2004, "Exploring Categorical Structuralism",
Philosophia Mathematica, 12,
37–53.
- Mc Larty, C., 2005, "Learning from Questions on Categorical
Foundations", Philosophia Mathematica, 13,
1, 44–60.
- Moerdijk, I. & Palmgren, E., 1997, "Minimal Models of Heyting
Arithmetic", Journal of Symbolic Logic, 62,
no. 4, 1448–1460.
- Moerdijk, I. & Palmgren, E., 2002, "Type Theories, Toposes and
Constructive Set Theory: Predicative Aspects of AST", Annals of
Pure and Applied Logic, 114, no. 1–3,
155–201.
- Moerdijk, I. & Reyes, G., 1991, Models for Smooth
Infinitesimal Analysis, New York: Springer-Verlag.
- Moerdijk, I., 1984, "Heine-Borel does not imply the Fan Theorem",
Journal of Symbolic Logic, 49, no. 2,
514–519.
- Moerdijk, I., 1995a, "A Model for Intuitionistic Non-standard
Arithmetic", Annals of Pure and Applied Logic,
73, no. 1, 37–51.
- Moerdijk, I., 1998, "Sets, Topoi and Intuitionism",
Philosophia Mathematica, 6, no. 2,
169–177.
- Pareigis, B., 1970, Categories and Functors, New York:
Academic Press.
- Pedicchio, M. C. & Tholen, W., 2004, Categorical
Foundations, Cambridge: Cambridge University Press.
- Peirce, B., 1991, Basic Category Theory for Computer
Scientists, Cambridge: MIT Press.
- Pitts, A. M. & Taylor, P., 1989, "A Note of Russell's
Paradox in Locally Cartesian Closed Categories", Studia
Logica, 48, no. 3, 377–387.
- Pitts, A. M., 1987, "Interpolation and Conceptual
Completeness for Pretoposes via Category Theory", Mathematical
Logic and Theoretical Computer Science, Lecture Notes in Pure and
Applied Mathematics, 106, New York: Dekker,
301–327.
- Pitts, A. M., 1989, "Conceptual Completeness for
First-order Intuitionistic Logic: an Application of Categorical
Logic", Annals of Pure and Applied Logic,
41, no. 1, 33–81.
- Pitts, A. M., 1992, "On an Interpretation of Second-order
Quantification in First-order Propositional Intuitionistic Logic",
Journal of Symbolic Logic, 57, no. 1,
33–52.
- Pitts, A. M., 2000, "Categorical Logic", Handbook of
Logic in Computer Science, Vol.5, Oxford: Oxford Unversity Press,
39–128.
- Plotkin, B., 2000, "Algebra, Categories and Databases",
Handbook of Algebra, Vol. 2, Amsterdam: Elsevier,
79–148.
- Reyes, G. & Zawadowski, M., 1993, "Formal Systems for Modal
Operators on Locales", Studia Logica, 52,
no. 4, 595–613.
- Reyes, G. & Zolfaghari, H., 1991, "Topos-theoretic Approaches
to Modality", Category Theory (Como 1990), Lecture Notes in
Mathematics, 1488, Berlin: Springer,
359–378.
- Reyes, G. & Zolfaghari, H., 1996, "Bi-Heyting Algebras,
Toposes and Modalities", Journal of Philosophical Logic,
25, no. 1, 25–43.
- Reyes, G., 1974, "From Sheaves to Logic", in Studies in
Algebraic Logic, A. Daigneault, ed., Providence: AMS.
- Reyes, G., 1991, "A Topos-theoretic Approach to Reference and
Modality", Notre Dame Journal of Formal Logic,
32, no. 3, 359–391.
- Rodabaugh, S. E. & Klement, E. P., eds.,
Topological and Algebraic Structures in Fuzzy Sets: A Handbook of
Recent Developments in the Mathematics of Fuzzy Sets, Trends in
Logic, 20, Dordrecht: Kluwer.
- Scedrov, A., 1984, Forcing and Classifying Topoi,
Providence: AMS.
- Scott, P.J., 2000, "Some Aspects of Categories in Computer
Science", Handbook of Algebra, Vol. 2, Amsterdam: North
Holland, 3–77.
- Seely, R. A. G., 1984, "Locally Cartesian Closed
Categories and Type Theory", Mathematical Proceedings of the
Cambridge Mathematical Society, 95, no. 1,
33–48.
- Shapiro, S., 2005, "Categories, Structures and the Frege-Hilbert
Controversy: the Status of Metamathematics", Philosophia
Mathematica, 13, 1, 61–77.
- Taylor, P., 1996, "Intuitionistic sets and Ordinals", Journal
of Symbolic Logic, 61, 705–744.
- Taylor, P., 1999, Practical Foundations of Mathematics,
Cambridge: Cambridge University Press.
- Tierney, M., 1972, "Sheaf Theory and the Continuum Hypothesis",
Toposes, Algebraic Geometry and Logic, F.W. Lawvere (ed.),
Springer Lecture Notes in Mathematics 274, 13–42.
- Van der Hoeven, G. & Moerdijk, I., 1984a, "Sheaf Models for
Choice Sequences", Annals of Pure and Applied Logic,
27, no. 1, 63–107.
- Van der Hoeven, G. & Moerdijk, I., 1984b, "On Choice Sequences
determined by Spreads", Journal of Symbolic Logic,
49, no. 3, 908–916.
- Van der Hoeven, G. & Moerdijk, I., 1984c, "Constructing Choice
Sequences for Lawless Sequences of Neighbourhood Functions",
Models and Sets, Lecture Notes in Mathematics,
1103, Berlin: Springer, 207–234.
- Wood, R.J., 2004, " Ordered Sets via Adjunctions", Categorical
Foundations, M. C. Pedicchio & W. Tholen, eds., Cambridge:
Cambridge University Press.
- Van Oosten, J., 2002, "Realizability: a Historical Essay",
Mathematical Structures in Computer Science,
12, no. 3, 239–263.