A. General monographs on fuzzy logics
- Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
2011a, Handbook of Mathematical Fuzzy Logic, Volume 1,
(Mathematical Logic and Foundations, Volume 37), London: College
Publications.
- ––– (eds.), 2011b, Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications.
- Cintula, Petr, Christian Fermüller, and Carles Noguera
(eds.), 2015, Handbook of Mathematical Fuzzy Logic, Volume 3,
(Mathematical Logic and Foundations, Volume 58), London: College
Publications.
- Gottwald, Siegfried, 2001, A Treatise On Many-Valued
Logics, (Studies in Logic and Computation, Volume 9), Baldock:
Research Studies Press Ltd.
- Hájek, Petr, 1998, Metamathematics of Fuzzy Logic
(Trends in Logic, Volume 4), Dordrecht: Kluwer.
B. Fuzzy logics and fuzzy set theory
- Goguen, Joseph A., 1969, “The Logic of Inexact
Concepts”, Synthese, 19(3–4): 325–373.
- Nguyen, Hung T., and Walker, Elbert A., 2005, A First Course
in Fuzzy Logic (third edition), Chapman and Hall/CRC.
- Ross, Timothy J., 2016, Fuzzy Logic with Engineering
Applications (fourth edition), Hoboken, NJ: Wiley.
- Zadeh, Lotfi A., 1965, “Fuzzy Sets”, Information
and Control, 8(3): 338–353.
doi:10.1016/S0019-9958(65)90241-X
C. Algebraic and real-valued semantics for fuzzy logics
- Aguzzoli, S., Bova, S., and Gerla, B., 2011, “Free algebras
and functional representation for fuzzy logics”, in P. Cintula,
P. Hájek, and C. Noguera, (editors), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
713–719.
- Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., and
Noguera, C., 2009, “Distinguished Algebraic Semantics for T-Norm
Based Fuzzy Logics: Methods and Algebraic
Equivalencies”, Annals of Pure and Applied Logic,
160(1): 53–81.
- Horčík, Rostislav, 2011, “Algebraic Semantics:
Semilinear FL-Algebras”, in P. Cintula, P. Hájek, and
C. Noguera, (editors), Handbook of Mathematical Fuzzy Logic,
Volume 1, (Mathematical Logic and Foundations, Volume 37), London: College Publications, pages
283–353.
- Jenei, Sándor and Franco Montagna, 2002, “A Proof
of Standard Completeness for Esteva and Godo’s Logic MTL”,
Studia Logica, 70(2): 183–192.
doi:10.1023/A:1015122331293
- –––, 2003, “A Proof of Standard
Completeness for Non-Commutative Monoidal T-norm Logic”,
Neural Network World, 13(5): 481–489.
- Klement, Erich Peter, Radkos Mesiar, and Endre Pap, 2000,
Triangular Norms, (Trends in Logic, Volume 8), Dordrecht:
Kluwer.
- Ling, Cho-Hsin, 1965, “Representation of Associative
Functions”, Publicationes Mathematicae Debrecen, 12:
189–212.
- Mostert, Paul S. and Allen L. Shields, 1957, “On the
Structure of Semigroups on a Compact Manifold with Boundary”,
The Annals of Mathematics, Second Series, 65(1):
117–143. doi:10.2307/1969668
- Vetterlein, T., 2015, “Algebraic Semantics: The Structure of
Residuated Chains”, in P. Cintula, C. G. Fermüller, and
C. Noguera, (editors), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London: College Publications,
pages 929–967.
D. Game-theoretic semantics for fuzzy logics
- Cicalese, F., and Montagna, F., 2015, “Ulam-Rényi
Game Based Semantics For Fuzzy Logics”, in P. Cintula,
C.G. Fermüller, and C. Noguera, (editors), Handbook of
Mathematical Fuzzy Logic, Volume 3, (Mathematical Logic and
Foundations, Volume 58), London: College Publications, pages
1029–1062.
- Fermüller, Christian G., 2015, “Semantic Games for
Fuzzy Logics”, in Cintula, Fermüller, and Noguera 2015:
969–1028.
- Fermüller, Christian G. and Christoph Roschger, 2014,
“Randomized Game Semantics for Semi-Fuzzy Quantifiers”,
Logic Journal of the Interest Group of Pure and Applied
Logic, 22(3): 413–439. doi:10.1093/jigpal/jzt049
- Giles, Robin, 1974, “A Non-Classical Logic for
Physics”, Studia Logica, 33(4): 397–415.
doi:10.1007/BF02123379
- Mundici, D., 1992, “The Logic of Ulam's Game With
Lies”, in C. Bicchieri, and M. Dalla Chiara,
(editors), Knowledge, Belief, and Strategic Interaction
(Castiglioncello, 1989), Cambridge: Cambridge
University Press, 275–284.
E. Other semantics for fuzzy logics
- Běhounek, Libor, 2009, “Fuzzy Logics Interpreted as
Logics of Resources”, in Michal Peliš (ed.), The
Logica Yearbook 2008, London: College Publications, pp.
9–21.
- Hisdal, Ellen, 1988, “Are Grades of Membership
Probabilities?” Fuzzy Sets and Systems, 25(3):
325–348. doi:10.1016/0165-0114(88)90018-8
- Lawry, J., 1998, “A Voting Mechanism for Fuzzy Logic”,
International Journal of Approximate Reasoning,
19(3–4): 315–333. doi:10.1016/S0888-613X(98)10013-0
- Montagna, Franco, and Ono, Hiroakira, “Kripke Semantics,
Undecidability and Standard Completeness for Esteva and Godo’s
Logic MTL\(\forall\)”, Studia Logica, 71(2):
227–245.
- Paris, Jeff B., 1997, “A Semantics for Fuzzy Logic”,
Soft Computing, 1(3): 143–147.
doi:10.1007/s005000050015
- –––, 2000, “Semantics for Fuzzy Logic
Supporting Truth Functionality”, in Vilém Novák
and Irina Perfilieva (eds.), Discovering the World with Fuzzy
Logic (Studies in Fuzziness and Soft Computing, Volume 57),
Heidelberg: Springer, pp. 82–104.
- Ruspini, Enrique H., 1991, “On the Semantics of Fuzzy
Logic”, International Journal of Approximate Reasoning,
5(1): 45–88. doi:10.1016/0888-613X(91)90006-8
F. Łukasiewicz logic
- Cignoli, R., D’Ottaviano, I.M., and Mundici, D.,
1999, Algebraic Foundations of Many-Valued Reasoning, (Volume
7), Dordrecht: Kluwer.
- Hay, Louise Schmir, 1963, “Axiomatization of the
Infinite-Valued Predicate Calculus”, Journal of Symbolic
Logic, 28(1): 77–86. doi:10.2307/2271339
- Leştean, I., and DiNola, A., 2011, “Łukasiewicz
Logic and MV-Algebras”, in P. Cintula, P. Hájek, and
C. Noguera, (editors), Handbook of Mathematical Fuzzy Logic,
Volume 2, (Mathematical Logic and Foundations, Volume 38), London: College Publications,
pages 469–583.
- Łukasiewicz, Jan, 1920, “O Logice
Trójwartościowej”, Ruch Filozoficzny, 5:
170–171. English translation, “On Three-Valued
Logic”, in Storrs McCall, (editor), 1967, Polish
Logic 1920–1939, Oxford: Clarendon Press, pages
16–18, and in Jan Łukasiewicz, 1970, Selected
Works, L. Borkowski, (editor), Amsterdam: North-Holland, pages
87–88.
- Łukasiewicz, J. and A. Tarski, 1930, “Untersuchungen
über den Aussagenkalkül”, Comptes Rendus Des
Séances de La Société Des Sciences et Des Lettres
de Varsovie, Cl. III, 23(iii): 30–50.
- McNaughton, Robert, 1951, “A Theorem About Infinite-Valued
Sentential Logic”, Journal of Symbolic Logic, 16(1):
1–13. doi:10.2307/2268660
- Mundici, D., 2011, Advanced Łukasiewicz Calculus and
MV-Algebras, (Trends in Logic, Volume 35), New York:
Springer.
G. Gödel logics
- Baaz, Matthias, 1996, “Infinite-Valued Gödel Logic with
0–1-Projections and Relativisations”, in Petr Hájek
(ed.), Gödel’96: Logical Foundations of Mathematics,
Computer Science, and Physics (Lecture Notes in Logic, vol. 6),
Brno: Springer, pages 23–33
- Baaz, Matthias, and Preining, Norbert, 2011,
“Gödel-Dummett Logics”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
585–625.
- Dummett, Michael, 1959, “A Propositional Calculus with
Denumerable Matrix”, Journal of Symbolic Logic, 24(2):
97–106. doi:10.2307/2964753
- Gödel, Kurt, 1932, “Zum intuitionistischen
Aussagenkalkül”, Anzeiger Akademie Der Wissenschaften
Wien, 69: 65–66.
- Horn, Alfred, 1969, “Logic with Truth Values in a Linearly
Ordered Heyting Algebra”, The Journal of Symbolic
Logic, 34(3): 395–408.
H. Other fuzzy logics
- Busaniche, Manuela, and Montagna, Franco, 2011,
“Hájek’s Logic BL and BL-Algebras”, in
Cintula, Petr, Petr Hájek, and Carles Noguera (eds.),
Handbook of Mathematical Fuzzy Logic, Volume 1, (Mathematical
Logic and Foundations, Volume 37), London: College Publications, pages
355–447.
- Esteva, Francesc, Joan Gispert, Lluís Godo, and Carles
Noguera, 2007, “Adding Truth-Constants to Logics of Continuous
T-Norms: Axiomatization and Completeness Results”, Fuzzy
Sets and Systems, 158(6): 597–618.
doi:10.1016/j.fss.2006.11.010
- Esteva, Francesc, and Lluís Godo, 2001, “Monoidal
T-Norm Based Logic: Towards a Logic for Left-Continuous
T-Norms”, Fuzzy Sets and Systems, 124(3):
271–288. doi:10.1016/S0165-0114(01)00098-7
- Esteva, Francesc, Lluís Godo, Petr Hájek, and
Mirko Navara, 2000, “Residuated Fuzzy Logics with an Involutive
Negation”, Archive for Mathematical Logic, 39(2):
103–124. doi:10.1007/s001530050006
- Esteva, Francesc, Godo, Lluís, and Marchioni, Enrico, 2011,
“Fuzzy Logics with Enriched Language”, in Cintula, Petr,
Petr Hájek, and Carles Noguera (eds.), Handbook of
Mathematical Fuzzy Logic, Volume 2, (Mathematical Logic and
Foundations, Volume 38), London: College Publications, pages
627–711.
- Esteva, Francesc, Lluís Godo, and Franco Montagna, 2001,
“The \(L\Pi\) and \(L\Pi\frac12\) Logics: Two Complete Fuzzy
Systems Joining Łukasiewicz and Product Logics”,
Archive for Mathematical Logic, 40(1): 39–67.
doi:10.1007/s001530050173
- –––, 2003, “Axiomatization of Any
Residuated Fuzzy Logic Defined by a Continuous T-Norm”, in Taner
Bilgiç, Bernard De Baets, and Okyay Kaynak (eds.), Fuzzy
Sets and Systems: IFSA 2003 (Lecture Notes in Computer Science,
vol. 2715), Berlin/Heidelberg: Springer, pp. 172–179.
doi:10.1007/3-540-44967-1_20
- Hájek, Petr, 2001, “On Very True”, Fuzzy
Sets and Systems, 124(3): 329–333.
- Haniková, Zuzana, 2014, “Varieties Generated by
Standard BL-Algebras”, Order, 31(1): 15–33.
doi:10.1007/s11083-013-9285-5
- Montagna, Franco, Noguera, Carles, and Horčík,
Rostislav, 2006, “On Weakly Cancellative Fuzzy
Logics”, Journal of Logic and Computation, 16(4):
423–450.
I. Fuzzy logics as substructural logics
- Cintula, Petr, Rostislav Horčík, and Carles Noguera,
2013, “Non-Associative Substructural Logics and their Semilinear
Extensions: Axiomatization and Completeness Properties”, The
Review of Symbolic Logic, 6(3): 394–423.
doi:10.1017/S1755020313000099
- –––, 2014, “The Quest for the Basic Fuzzy
Logic”, in Franco Montagna (ed.), Petr Hájek on
Mathematical Fuzzy Logic (Outstanding Contributions to Logic,
vol. 6), Cham: Springer, pp. 245–290.
doi:10.1007/978-3-319-06233-4_12
- Esteva, Francesc, Godo, Lluís, and
García-Cerdaña, Àngel, 2003, “On the
Hierarchy of t-norm Based Residuated Fuzzy Logics”, in Fitting,
Melvin, and Orłowska, Ewa, (editors), Beyond Two: Theory and
Applications of Multiple-Valued Logic, (Studies in Fuzziness and
Soft Computing, Volume 114), Heidelberg: Springer, pages
251–272.
- Galatos, Nikolaos, Jipsen, Peter, Kowalski, Tomasz, and Ono,
Hiroakira, (editors), 2007, Residuated Lattices: An Algebraic
Glimpse at Substructural Logics, (Studies in Logic and the
Foundations of Mathematics, Volume 151), Amsterdam: Elsevier.
- Metcalfe, George and Franco Montagna, 2007, “Substructural
Fuzzy Logics”, Journal of Symbolic Logic, 72(3):
834–864. doi:10.2178/jsl/1191333844
J. Fuzzy logics in abstract algebraic logic
- Běhounek, Libor, and Cintula, Petr, 2006, “Fuzzy Logics
as the Logics of Chains”, Fuzzy Sets and Systems,
157(5): 604–610.
- Cintula, Petr, 2006, “Weakly impredicative (fuzzy) logics I:
Basic properties”, Archive for Mathematical Logic,
45(6): 673–704.
- Cintula, Petr, and Noguera, Carles, 2011, “A General
Framework for Mathematical Fuzzy Logic”, in Cintula, Petr, Petr
Hájek, and Carles Noguera (eds.), Handbook of Mathematical
Fuzzy Logic, Volume 1, (Mathematical Logic and Foundations,
Volume 37), London: College Publications, pages 103–207.
- Font, Josep Maria, 2016, Abstract Algebraic Logic: An
Introductory Textbook, (Mathematical Logic and Foundations,
Volume 60), London: College Publications.
K. First- and higher-fuzzy logics
- Běhounek, Libor, and Cintula, Petr, 2005, “Fuzzy Class
Theory”, Fuzzy Sets and Systems, 154(1):
34–55.
- Běhounek, Libor, and Haniková, Zuzana, 2014,
“Set Theory and Arithmetic in Fuzzy Logic”, in Montagna,
Franco, (editor), Petr Hájek on Mathematical Fuzzy
Logic, (Outstanding Contributions to Logic, Volume 6), Cham:
Springer, pages 63–89.
- Dellunde, P., 2012, “Preserving Mappings in Fuzzy Predicate
Logics”, Journal of Logic and Computation, 22(6):
1367–1389.
- Di Nola, A., and Gerla, G., 1986, “Fuzzy Models of
First-Order Languages”, Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 32(19–24):
331–340.
- Hájek, P., and Cintula, P., 2006, “On Theories and
Models in Fuzzy Predicate Logics”, Journal of Symbolic
Logic, 71(3): 863–880.
- Hájek, P., and Haniková, Z., 2003, “A
Development of Set Theory in Fuzzy Logic”, in Fitting, Melvin,
and Orłowska, Ewa, (editors), Beyond Two: Theory and
Applications of Multiple-Valued Logic, (Studies in Fuzziness and
Soft Computing, Volume 114), Heidelberg: Springer, pages
273–285.
- Háajek, P., Paris, J., and Shepherdson, J.C., 2000,
“The Liar Paradox and Fuzzy Logic”, Journal of
Symbolic Logic, 65(1): 339–346.
- Novák, V., 2004, “On Fuzzy Type
Theory”, Fuzzy Sets and Systems, 149(2): 235–273.
- Takeuti, G., and Titani, S., 1984, “Intuitionistic Fuzzy
Logic and Intuitionistic Fuzzy Set Theory”, Journal of
Symbolic Logic, 49(3): 851–866.
- Takeuti, G., and Titani, S., 1992, “Fuzzy Logic and Fuzzy
Set Theory”, Archive for Mathematical Logic, 32(1):
1–32.
L. Complexity of fuzzy logics
- Baaz, M., Hájek, P., Montagna, F., and Veith, H., 2002,
“Complexity of T-Tautologies”, Annals of Pure and
Applied Logic, 113(1–3): 3–11.
- Hájek, P., Montagna, F., & Noguera, C., 2011,
“Arithmetical Complexity of First-Order Fuzzy Logics”, in
Cintula, Petr, Hájek, Petr, and Noguera, Carles,
(editors), Handbook of Mathematical Fuzzy Logic, Volume 2,
(Mathematical Logic and Foundations, Volume 38), London: College
Publications, pages 853–908.
- Haniková, Zuzana, 2011, “Computational Complexity of
Propositional Fuzzy Logics”, in Cintula, Petr, Hájek,
Petr, and Noguera, Carles, (editors), Handbook of Mathematical
Fuzzy Logic, Volume 2, (Mathematical Logic and Foundations,
Volume 38), London: College Publications, pages 793–851.
- Montagna, Franco, 2001, “Three Complexity Problems in
Quantified Fuzzy Logic”, Studia Logica, 68(1):
143–152. doi:10.1023/A:1011958407631
- Montagna, Franco and Carles Noguera, 2010, “Arithmetical
Complexity of First-Order Predicate Fuzzy Logics Over Distinguished
Semantics”, Journal of Logic and Computation, 20(2):
399–424. doi:10.1093/logcom/exp052
- Mundici, D., 1987, &ldauo;Satisfiability in Many-Valued Sentential
Logic Is NP-Complete”, Theoretical Computer Science,
52(1–2): 145–153.
- Ragaz, Matthias Emil, 1981, Arithmetische Klassifikation von
Formelmengen der unendlichwertigen Logik (PhD thesis). Swiss
Federal Institute of Technology, Zürich.
doi:10.3929/ethz-a-000226207
- Scarpellini, Bruno, 1962, “Die Nichtaxiomatisierbarkeit des
unendlichwertigen Prädikatenkalküls von
Łukasiewicz”, Journal of Symbolic Logic, 27(2):
159–170. doi:10.2307/2964111
M. Proof theory for fuzzy logics
- Avron, Arnon, 1991, “Hypersequents, Logical Consequence and
Intermediate Logics for Concurrency”, Annals of Mathematics
and Artificial Intelligence, 4(3–4): 225–248.
doi:10.1007/BF01531058
- Ciabattoni, A., Galatos, N., and Terui, K., 2012, “Algebraic
Proof Theory for Substructural Logics: Cut-Elimination and
Completions”, Annals of Pure and Applied Logic, 163(3):
266–290.
- Fermüller, Christian G., and George Metcalfe, 2009,
“Giles’s Game and Proof Theory for Łukasiewicz
Logic”, Studia Logica, 92(1): 27–61.
doi:10.1007/s11225-009-9185-2
- Metcalfe, George, 2011, “Proof Theory for Mathematical Fuzzy
Logic”, in Cintula, Petr, Petr Hájek, and Carles
Noguera (eds.), Handbook of Mathematical Fuzzy Logic, Volume
1, (Mathematical Logic and Foundations, Volume 37), London: College
Publications, pages 209–282.
- Metcalfe, George, Nicola Olivetti, and Dov M. Gabbay, 2008,
Proof Theory for Fuzzy Logics (Applied Logic Series, vol.
36), Dordrecht: Springer Netherlands.
N. Structural completeness and unification in fuzzy logics
- Cintula, P., and Metcalfe, G., 2009, “Structural
Completeness in Fuzzy Logics”, Notre Dame Journal of Formal
Logic, 50(2): 153–183.
- Jeřábek, E., 2010, “Bases of Admissible Rules of
Łukasiewicz Logic”, Journal of Logic and
Computation, 20(6): 1149–1163.
- Marra, V., and Spada, L., 2013, “Duality, Projectivity, and
Unification in řukasiewicz Logic and
MV-Algebras”, Annals of Pure and Applied Logic, 164(3):
192–210.
O. Modal fuzzy logics
- Bou, F., Esteva, F., Godo, L., and Rodríguez, R.O., 2011,
“On the Minimum Many-Valued Modal Logic Over a Finite Residuated
Lattice”, Journal of Logic and Computation, 21(5):
739–790.
- Caicedo, X., and Rodríguez, R.O., 2010, “Standard
Gödel Modal Logics”, Studia Logica, 94(2):
189–214.
- Hansoul, G., and Teheux, B., 2013, “Extending
řukasiewicz Logics With a Modality: Algebraic Approach to
Relational Semantics”, Studia Logica, 101(3):
505–545, doi: 10.1007/s11225-012-9396-9.
P. Description fuzzy logics
- Bobillo, F., Cerami, M., Esteva, F., García-Cerdaña,
À., Peñaloza, R., and Straccia, U., 2015, “Fuzzy
Description Logics”, in Cintula, P., Fermüller, C.G. , and
Noguera, C., (editors), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1105–1181.
- García-Cerdaña, À., Armengol, E., and Esteva,
F., 2010, “Fuzzy Description Logics and T-Norm Based Fuzzy
Logics”, International Journal of Approximate
Reasoning, 51(6): 632–655.
- Hájek, P., 2005, “Making Fuzzy Description Logic More
General”, Fuzzy Sets and Systems, 154(1):
1–15.
- Straccia, U., 1998, “A Fuzzy Description Logic”, in
Mostow, J., and Rich, C., (editors), Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI 1998), Menlo
Park: AAAI Press, pages 594–599.
Q. Probability and fuzzy logics
- Fedel, M., Hosni, H., and Montagna, F., 2011, “A Logical
Characterization of Coherence for Imprecise
Probabilities”, International Journal of Approximate
Reasoning, 52(8): 1147–1170, doi:
10.1016/j.ijar.2011.06.004.
- Flaminio, T., Godo, L., and Marchioni, E., 2011, “Reasoning
About Uncertainty of Fuzzy Events: An Overview”, in Cintula,
Petr, Fermuller, Christian G., Godo, Lluis, and Hájek, Petr,
(editors), Understanding Vagueness: Logical, Philosophical, and
Linguistic Perspectives, (Studies in Logic, Volume 36), London:
College Publications, pages 367–400.
- Flaminio, T., and Kroupa, T., 2015, “States of
MV-Algebras”, in Cintula, Petr, Christian Fermüller, and
Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1183–1236.
- Godo, L., Esteva, F., and Hájek, P., 2000, “Reasoning
About Probability Using Fuzzy Logic”, Neural Network
World, 10(5): 811–823, (Special Issue on SOFSEM 2000).
R. Other approaches to fuzzy logic
- Bělohlávek, R., and Vychodil, V., 2005, Fuzzy
Equational Logic, (Studies in Fuzziness and Soft Computing,
Volume 186), Berlin and Heidelberg: Springer.
- Gerla, G., 2001, Fuzzy Logic—Mathematical Tool for
Approximate Reasoning, (Trends in Logic, Volume 11), New York:
Kluwer and Plenum Press.
- Novák, V., 2015, “Fuzzy Logic With Evaluated
Syntax”, in Cintula, Petr, Christian Fermüller, and Carles
Noguera (eds.), Handbook of Mathematical Fuzzy Logic, Volume
3, (Mathematical Logic and Foundations, Volume 58), London: College
Publications, pages 1063–1104.
- Novák, V., Perfilieva, I., and Močkoř, J.,
2000, Mathematical Principles of Fuzzy Logic, Dordrecht:
Kluwer.
- Pavelka, J., 1979, “On Fuzzy Logic I, II, and III”,
Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 25: 45–52, 119–134, and
447–464.
S. Vagueness and fuzzy logics
- Běhounek, Libor, 2014, “In Which Sense Is Fuzzy Logic a
Logic For Vagueness?”, in Lukasiewicz, Thomas, Peñaloza,
Rafael, and Turhan, Anni-Yasmin, (editors), PRUV 2014: Logics for
Reasoning About Preferences, Uncertainty, and Vagueness, (CEUR
Workshop Proceedings, Volume 1205), Dresden: CEUR.
- Hájek, Petr, and Vilém Novák, 2003,
“The Sorites Paradox and Fuzzy Logic”, International
Journal of General Systems, 32(4): 373–383.
doi:10.1080/0308107031000152522
- Smith, Nicholas J.J., 2005, “Vagueness as Closeness”,
Australasian Journal of Philosophy, 83(2): 157–183.
doi:10.1080/00048400500110826
- –––, 2008, Vagueness and Degrees of
Truth, Oxford: Oxford University Press.
- –––, 2015, “Fuzzy Logics in Theories of
Vagueness”, in Cintula, Petr, Christian Fermüller, and
Carles Noguera (eds.), Handbook of Mathematical Fuzzy Logic,
Volume 3, (Mathematical Logic and Foundations, Volume 58), London:
College Publications, pages 1237–1281.