Supplement to The Kochen-Specker Theorem

Proof of VC2

Let Sx, Sy, Sz be the usual angular momentum operators satisfying [Sx, Sy] = i Sz, and define S2 := Sx2 + Sy2 + Sz2. It can be shown that the eigenvalues of S2 are s(s + 1) where s is an integer or half-integer.

Now let s=1. Then it follows (see e.g. Kochen and Specker 1967: 308, Redhead 1987: 37-38) that Sx2, Sy2, Sz2 are all mutually commuting and that:

Sx2 + Sy2 + Sz2 = 2I,

where I is the identity operator. Now, from KS2 (a) (Sum Rule):

v(Sx2) + v(Sy2) + v(Sz2) = 2v(I)

Now, assume an observable R such that v(R) ≠ 0 in state |ψ>. From this assumption and KS2 (b) (Product Rule):

    v(R) = v(I R) = v(I) v(R)
v(I) = 1


(VC2)  v(Sx2) + v(Sy2) + v(Sz2) = 2

where v(Si2) = 1 or 0, for i = x, y, z.

Return to The Kochen-Specker Theorem

Copyright © 2013 by
Carsten Held <>

Open access to the SEP is made possible by a world-wide funding initiative.
Please Read How You Can Help Keep the Encyclopedia Free

The SEP would like to congratulate the National Endowment for the Humanities on its 50th anniversary and express our indebtedness for the five generous grants it awarded our project from 1997 to 2007. Readers who have benefited from the SEP are encouraged to examine the NEH’s anniversary page and, if inspired to do so, send a testimonial to