Notes to Propositional Function

1. Here is Church's inductive definition of the ramified hierarchy

  1. i is a type;
  2. If t1, …, tn are types then <t1, …, tn>/m is a type, where m is a natural number greater than or equal to 1.

An expression of type <t1, …, tn>/m is a propositional function that takes arguments of types t1,…, tnto a proposition of the order N, where N = m + the highest order of t1,…, tn (the order of i is 0). Since m must be at least 1, the order of proposition that results from applying a propositional function to p must be at least one greater than the order of p.

Copyright © 2011 by
Edwin Mares <>

Open access to the SEP is made possible by a world-wide funding initiative.
Please Read How You Can Help Keep the Encyclopedia Free

The SEP would like to congratulate the National Endowment for the Humanities on its 50th anniversary and express our indebtedness for the five generous grants it awarded our project from 1997 to 2007. Readers who have benefited from the SEP are encouraged to examine the NEH’s anniversary page and, if inspired to do so, send a testimonial to